当前位置:首页 > 教程 > 奥数知识总结手册(必备5篇)

奥数知识总结手册(必备5篇)

  • 总结
  • 2024-02-17 12:31:43
  • 173

奥数知识总结手册 第1篇

1.和差倍问题 和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数一、和差倍问题 (一)和差问题:已知两个数的和及两个数的差 ;求这两个数。 方法① :(和-差)÷2= 较小数 ;和 -较小数 =较大数 方法② :(和+ 差)÷2=较大数 ;和- 较大数 =较小数 例如:两个数的和是 15;差是 5; 求这两个数。方法:(15-5)÷2=5 (; 15+5)÷2=10 . (二)和倍问题:已知两个数的和及这两个数的倍数关系;求这两个数。 方法:和÷(倍数 +1)=1 倍数(较小数) 1 倍数(较小数)×倍数 = 几倍数(较大数) 或和 -1 倍数(较小数) = 几倍数(较大数) 例如:两个数的和为 50;大数是小数的 4 倍 ;求这两个数。 方法: 50÷( 4+1) =10 10×4=40 (三)差倍问题:已知两个数的差及两个数的倍数关系 ;求这两个数。 方法:差÷(倍数 -1 )=1 倍数(较小数) 1 倍数(较小数)×倍数 = 几倍数(较大数) 或和 -倍数(较小数) =几倍数(较大数) 例如:两个数的差为 80;大数是小数的 5 倍 ;求这两个数。 方法: 80÷( 5-1)=20 20×5=100 和与差和与倍数差与倍数 2.年龄问题的三个基本特征: ①两个人的年龄差是不变的 ; ②两个人的年龄是同时增加或者同时减少的 ;

③两个人的年龄的倍数是发生变化的 ; 两人年龄的倍数关系是变化的量 ; 解答年龄问题的一般方法是: 几年后年龄 =大小年龄差÷倍数差 -小年龄 ; 几年前年龄 =小年龄 -大小年龄差÷倍数差. 3.归一问题的基本特点:问题中有一个不变的量 ;一般是那个“单一量”题;目一般用“照这样的速度”??等词语来表示。 关键问题:根据题目中的条件确定并求出单一量 ; 4.植树问题 基本类型在直线或者不封闭的曲线上植树;两端都植树在直线或者不封闭的曲线上植 树 两端都不植树在直线或者不封闭的曲线上植树;只有一端植树封闭曲线上植树 三、植树问题 (一)不封闭型(直线)植树问题 1、直线两端植树:棵数 =段数 +1=全长÷株距+1 ; 全长=株距×(棵数-1 ); 株距=全长÷(棵数-1 ); 2、直线一端植树:全长=株距×棵数; 棵数 =全长÷株距 ; 株距 =全长÷棵数 ; 3 、直线两端都不植树:棵数 =段数-1= 全长÷株距 -1 ; 株距=全长÷(棵数 +1 ) (二)封闭型(圆、三角形、多边形等)植树问题 棵数 =总距离÷棵距; 总距离 =棵数×棵距;

奥数知识总结手册 第2篇

小学五年级奥数知识点分类汇总及解析 第12讲盈亏问题 一、知识要点 盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。 盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。 一些非标准的盈亏问题都是由标准的盈亏问题演变过 来的。解题时我们可以记住:

1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数; 2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数; 3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。 二、精讲精练 【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。乒乓球队共有多少名学生? 【思路导航】(1)由“少一个女生,增加一个男生,则男 生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为 女生人数的一半,即现在女生有4×2=8人。原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。

奥数知识总结手册 第3篇

-3. xxx性质 (三) 教学目标 1. 学习xxx的三大定理及综合运用 2. 理解弃9 法,并运用其解题 知识点拨 一、三大xxx定理: 1. xxx的加法定理 a 与b的和除以c 的xxx,等于a,b分别除以c的xxx之和,或这个和除以 c 的xxx。 例如:23,16 除以 5 的xxx分别是 3 和1,所以23+16=39 除以 5 的xxx等于4,即两个xxx的和3+1. 当xxx的和比除数大时,所求的xxx等于xxx之和再除以 c 的xxx。 例如:23,19除以 5 的xxx分别是 3 和4,所以23+19=42 除以 5 的xxx等于3+4=7 除以 5 的xxx为2 2. xxx的加法定理 a 与b的差除以c 的xxx,等于a,b分别除以c的xxx之差。 例如:23,16除以 5 的xxx分别是 3 和1,所以23-16=7 除以 5 的xxx等于2,两个xxx差3-1=2. 当xxx的差不够减时时,补上除数再减。 例如:23,14除以 5 的xxx分别是 3 和4,23-14=9 除以5的xxx等于4,两个xxx差为3+5-4=4 3. xxx的乘法定理 a 与b的乘积除以 c 的xxx,等于a, b 分别除以c的xxx的积,或者这个积除以c所得的xxx。 例如:23,16除以 5 的xxx分别是 3 和1,所以23 ×16 除以5的xxx等于3×1=3。当xxx的和比除数大时,所求的xxx等于xxx之积再除以 c 的xxx。 例如:23,19除以5 的xxx分别是3 和4,所以23 ×19 除以5的xxx等于3×4 除以5 的xxx,即2. 乘方:如果 a 与 b 除以m 的xxx相同,那么a n与b n除以m的xxx也相同. 二、弃九法原理 在公元前9 世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的: 例如:检验算式1234 1898 18922 678967 178902 889923 1234除以9 的xxx为1 1898除以9 的xxx为8 18922 除以9 的xxx为4 678967 除以9 的xxx为7

奥数知识总结手册 第4篇

标红:难点或常考 标蓝:基础 小学四年级奥数知识点总复习 1.常用特殊数的乘积 25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=111 2.加减法运算性质: 同级运算时,如果交换数的位置,应注意符号搬家。加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。 100+(21+58)=100+21+ 58 100-(21+58)=100-21- 58 3.乘除法运算性质 乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。 除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。积的变化规律:同扩同缩法。同级运算时,如果有交换数的位置,应该注意符号搬家。加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。 100×(4×5)=100×4×5 100÷(4÷5)=100÷4÷5 4.最大最小 1、解答最大最小的问题,可以进行枚举比较。在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。 2、运用规律。(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。 3、考虑极端情况。如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。 5.比较大小 估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度

奥数知识总结手册 第5篇

小学奥数知识点解析 之简便方法归类 01 提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。注意相同因数的提取。 例: ×+× =×() 02 借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。 还要注意还哦 ,有借有还,再借不难。 考试中,看到有类似998、999或者等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如

9999+999+99+9 =9999+1+999+1+99+1+9+1—4 03 拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和,4和,8和等。分拆还要注意不要改变数的大小哦。 例如 ××25 =8×××25 =8×××25 04 加法结合律 注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。 例如 +++

=(+)+(+) 05 拆分法和乘法分配律结 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、等接近一个整数的时候,要首先考虑拆分。 例如 34× = 34×(10-) 案例再现:57×101=57×(100+1) 06 利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如 2072+2052+2062+2042+2083 =(2062x5)+10-10-20+21