当前位置:首页 > 教程 > 高中数学必修四第一章知识点总结(9篇)

高中数学必修四第一章知识点总结(9篇)

  • 总结
  • 2024-02-25 13:55:57
  • 174

高中数学必修四第一章知识点总结 第1篇

第一章 集合与函数概念

集合

阅读与思考 集合中元素的个数

函数及其表示

阅读与思考 函数概念的发展历程

函数的基本性质

信息技术应用 用计算机绘制函数图象

实习作业

复习参考题

第二章 基本初等函数(Ⅰ)

指数函数

信息技术应用 借助信息技术探究指数函数的性质

对数函数

阅读与思考 对数的发明

探究与发现 互为反函数的两个函数图象之间的关系

幂函数

复习参考题

第三章 函数的应用

函数与方程

阅读与思考 中外历史上的方程求解

信息技术应用 借助信息技术求方程的近似解

函数模型及其应用

信息技术应用 收集数据并建立函数模型

实习作业

复习参考题

如何学好高中数学

先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

高中数学必修四第一章知识点总结 第2篇

集合间的基本关系

1.“包含”关系—子集

(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA)

注意:有两种可能(1)A是B的一部分,;

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) 或若集合A?B,存在xB且x A,则称集合A是集合B的真子集。

③如果A?B, B?C ,那么A?C

④ 如果A?B 同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

高中数学必修四第一章知识点总结 第3篇

一、平面的基本性质与推论

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线—平行、相交、异面;

直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面—平行、相交。

3、异面直线:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

xxx的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线xxx的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面xxx的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线xxx的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

人教版高一数学知识点框架

1.等比中项

如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2.等比数列通项公式

an=a1_q’(n-1)(其中首项是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3.等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比数列性质

(1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和xxx等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

(6)任意两项am,an的关系为an=am·q’(n-m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

高中数学必修四第一章知识点总结 第4篇

必修4

【第一章】三角函数考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

【第二章】平面向量向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

【第三章】三角恒等变换这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

高中数学必修四第一章知识点总结 第5篇

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型.

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组.

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(4)基本不等式:

了解基本不等式的证明过程.

会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

高中数学必修四第一章知识点总结 第6篇

高中数学必修四知识点总结

高中数学必修四知识点总结

角的概念的推广

弧度制

任意角的三角函数

同角三角函数的基本关系

正xxx诱导公式

两角和与差

二倍角的正弦、xxx、正切

正xxx函数的.图像和性质

函数y=Asin(ωx+φ)的图像

正切函数的图像和性质

已知三角函数值求角

平面向量的基本概念

向量的加法与减法

实数与向量的积

平面向量的坐标计算

线段的定比分点

平面向量的数量积与运算律

平面向量数量积得坐标表示

高中数学必修四第一章知识点总结 第7篇

本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性

1、函数单调性的定义

2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法

二、函数的奇偶性和周期性

1、函数的奇偶性和周期性的定义

2、函数的奇偶性的判定和证明方法

3、函数的周期性的判定方法

三、函数的图象

1、函数图象的作法 (1)描点法 (2)图象变换法

2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法

本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

误区提醒

1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高中数学必修四第一章知识点总结 第8篇

必修3

总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。 程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。 xxx韶算法是重点,要牢记算法的公式。 统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。 概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。

高中数学必修四第一章知识点总结 第9篇

一、平面的基本性质与推论

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线―平行、相交、异面;

直线与平面―平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面―平行、相交。

3、异面直线:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

xxx的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线xxx的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面xxx的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线xxx的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直