勾股定理知识点总结(热门8篇)
- 总结
- 2024-01-30 11:25:26
- 171
勾股定理知识点总结 第1篇
八年级数学上册勾股定理知识点
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三边长a,b,xxx这种关系,那么这个三角形是直角三角形。
3、勾股数
满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。
2、三角形内角和定理:三角形三个内角的和等于180度。
(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。
(2)三角形的外角与它相邻的内角是互为补角。
3、三角形的外角与它不相邻的内角关系
(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
4、证明一个命题是真命题的基本步骤
(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
学好初中数学的方法和技巧总结
主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
让数学课学与练结合
在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
初中数据的平均数中位数与众数知识点
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
勾股定理知识点总结 第2篇
∵ AD 是 BC 边上的中线,BC = 10 cm ,
∴ BD = DC = 5 cm ,
在 △ADB 中,AB = 13 cm , AD = 12 cm , BD = 5 cm ,
∵ 5 × 5 + 12 × 12 = 13 × 13 ,
∴ BD2 + AD2 = AB2 ,
∴ △ADB 是直角三角形,
∴ ∠ADB = ∠ADC = 90° ,
∴ △ADB ≌ △ADC,(SAS)
∴ AB = AC .
勾股定理知识点总结 第3篇
1、一架方梯长 25 米,如图,斜靠在一面墙上,梯子底端离墙 7 米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了 4 米,那么梯子的底端在水平方向滑动了几米?
(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?
2、如图,A、B 两个小集镇在河流 CD 的同侧,分别到河的距离为 AC = 10 千米,BD = 30 千米,
且 CD = 30 千米,现在要在河边建一自来水厂,向 A、B 两镇供水,铺设水管的费用为每千米 3 万,
请你在河流 CD 上选择水厂的位置 M,使铺设水管的费用最节省,并求出总费用是多少?
来自: 正一华光 > 《教育 学习》
0条评论
发表
请遵守用户 评论公约
旧版几何《勾股定理的逆定理》典型例题
旧版几何《勾股定理的逆定理》典型例题。说明:勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,与前面学习的方法不同,它需要通过代数运算算出来..分析:我们不知道这个四边形是否为特...
新人教版八年级数学下册勾股定理知识点和典型例习题1
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的...
勾股定理及其逆定理(一)
5. 等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三...
第十八章学案
课题勾股定理的逆定理主备人xxx课时1时间2012-4-10学习目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2.你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗?课题勾股...
八年级下册数学 人教版 勾股定理初步知识复习教案
勾股定理应用初步复习教案学生学校年级初二次数科目数学教师日期时段课题勾股定理应用初步教学重点1、熟练掌握勾股定理的证明及相关计算2、熟练掌握勾股定理的逆定理及相关计算教学难点1、掌握勾股定理...
北师大八年级下2 直角三角形(1)
2 直角三角形第1课时直角三角形的性质和判定性质定理:直角三角形的两个锐角互余。
八年级数学下册《第十七章 勾股定理》单元测试卷(附有答案)
初中数学专题:勾股定理及练习
初中数学专题:勾股定理及练习。1.勾股定理的内容:勾股定理的由来:勾股定理也叫商高定理,在西方称为xxx拉斯定理.我国古代把直角三角...
初中数学:勾股定理全章知识点总结大全及重点题型
初中数学:勾股定理全章知识点总结大全及重点题型。4. 勾股定理的逆定理:如果三角形的三条边长a,b,xxx下列关系:a2+b2=c2,那么这个三角形是直角三角形;解:在直角三角形AOB中,根据勾股定理AB2=...
微信扫码,在手机上查看选中内容
微信扫码,在手机上查看选中内容
勾股定理知识点总结 第4篇
它通过 “数转化为形” 来确定三角形的可能形状,
在运用这一定理时,可用两小边的平方和 a2 + b2 与较长边的平方 c2 作比较 :
若它们相等时,以 a,b,c 为三边的三角形是直角三角形;
若 a2 + b2 < c2,时,以 a,b,c 为三边的三角形是钝角三角形;
若 a2 + b2 > c2,时,以 a,b,c 为三边的三角形是锐角三角形 .
勾股定理知识点总结 第5篇
1、发展历程
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前11)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者xxx,曾经给出过任意直角三角形的'三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
2、主要意义
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数“与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理知识点总结 第6篇
八年级上册数学勾股定理知识点
1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫xxx拉斯定理
2.勾股定理的逆定理:
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:
满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
例题精讲:
练习:
例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为
解析:可知三边长度为3,4,5,因此周长为12
(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为
解析:可知三边长度为6,8,10,则周长为24
例2:已知直角三角形的两边长分别为3、4,求第三边长.
解析:第一种情况:当直角边为3和4时,则斜边为5
第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7
《点评》此题是一道易错题目,同学们应该认真审题!
例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25
B.三角形周长为25
C.斜边长为5
D.三角形面积为20
解析:根据勾股定理,可知斜边长度为5,选择C
初中数学的方法和技巧
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
初中数学特殊三角函数值
°=根号3/2。
°+cos260°=1.
°+tan45°=2.
°=1.
°+sin30°=1.
勾股定理知识点总结 第7篇
① 能够构成直角三角形的三边长的三个正整数称为勾股数,
即 a2 + b2 = c2 中,a,b,c 为正整数时,称 a,b,c 为一组勾股数 ;
② 记住常见的勾股数可以提高解题速度,例如 3 , 4 , 5;6 , 8 , 10;5 , 12 , 13 等 ;
③ 用含字母的代数式表示 n 组勾股数:
勾股定理知识点总结 第8篇
八年级下册数学勾股定理知识点
勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.
勾股定理的由来:勾股定理也叫商高定理,在西方称为xxx拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的逆定理
如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;若,时,以a,b,c 为三边的三角形是钝角三角形;若,时,以a,b,c 为三边的三角形是锐角三角形;
②定理中a,b,c 及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足,那么以a,b,c 为三边的三角形是直角三角形,但是b为斜边.
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形
质数和合数应用
1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
数学的方法技巧整理
预习的方法
上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。
听懂课的习惯
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
不断练习
不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。
及时小结,温故知新
一要进行复习小结,及时再现当天或本单元所学的知识;二要积累资料进行整理。可将平时作业、小测验中技巧性强的、易错的题目及时收集成册——错题本,便于复习时参考。
本文由admin于2024-01-30发表在叁佰资料网,如有疑问,请联系我们。
本文链接:http://www.sanbaiyy.com/p/12476.html