当前位置:首页 > 教程 > 构造向量总结(推荐5篇)

构造向量总结(推荐5篇)

  • 总结
  • 2024-03-11 08:56:02
  • 188

构造向量总结 第1篇

各位老师大家好,今天,我说课的内容是:人教b版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析

1、关于教材内容的分析

(1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。

(2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它也为平面向量坐标表示的学习打下基础。

(3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。

2、关于教学目标的确定

根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。

1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量

②会把任意向量表示为一组基地的线性组合。掌握线段中点的向量表达式

2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力

3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。

3、重点和难点的分析

掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。

结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。

此模式的流程为激发兴趣——发现问题,提出问题——自主探究,解决问题——自主练习,采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。

学情分析:前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备。

学法指导:教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、

构造向量总结 第2篇

1.教材的地位和作用:《实数与向量的积》这一章在高中阶段有着很重要的作用。有广泛的实际应用,在整个中学数学里起着承前启后的作用。并且是培养学生数学能力的良好题材。实数与向量的积是向量的重要组成部分,在前面学习了向量的加法和减法,掌握好实数与向量的积这一运算的关键在于明确这一运算的结果仍然是向量,要按大小和方向两个要素去理解及应用。

向量共线充要条件实际上是由实数与向量的积的定义得到的,利用它常可以解决三点共线和两直线平行等问题。能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视。

同时,这节课的教学过程对进一步培养学生观察、分析、类比、化归的思想和归纳问题的能力具有重要意义。

2.教材的处理:结合教参与学生的学习能力,我将《实数与向量的积》安排了2节课。本节课是第一课时。因为在前面学习了向量的加法和减法。为了进一步体现化归思想在高中数学中的运用,我在这节课中也着重体现了化归思想的运用。

3、教学重点与难点:根据学生现状、及教学要求我确立本节课的教学重点为:理解实数与向量的积的定义及其运用。

本节课的难点定为:对向量共线的充要条件的理解

要突破这个难点,关键在于紧扣定义,讲清向量平行与直线平行的区别。

4、教学目标的分析

根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为三个方面:

(1)知识教学目标:

使学生在掌握实数与向量的积的定义、运算律的基础上,理解向量共线的充要条件,并能用来解决一些实际问题。

(2)能力训练目标:

培养学生运用类比化归的方法去发现并解决问题的能力。使学生认识到化归思想在数学中的重要性。

(3)德育渗透目标:

使学生认识到事物之间的相互联系和辨证统一;增强学生的应用意识;提高学生的数学素质

现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。这堂课用化归的方法运用向量共线的充要条件是一种较好的学法。 在这节课中涉及到了数学中的一种思想方法,即类比思想。数学思想方法是数学的精髓,它蕴含于数学知识发生、发展和应用的过程中,正确地运用数学思想方法,能把数学知识和技能转化为分析问题和解决问题的能力,体现数学学科的特点,形成良好的数学素养。

我在讲解这部分知识时注意引导学生要充分认识到数学中的类比思想,并引导学生进行类比,充分体会到类比思想的精髓。

第1环节、引入新课:实数与向量的积的定义

第2环节、知识运用:实数与向量的积的运算律。

第3环节、升华提高:理解并证明向量共线定理。

第4环节、性质的运用。我针对向量共线定理设计了两个例题,从正反两个方面体现了定理的实际运用,符合学生的认知过程。在讲解这些例题时着重体现向量共线充要条件的运用。在性质的运用过程中要特别强调向量平行与直线平行的区别。在例题后我还预留了习题时间,用以巩固本节课所学。

第5环节、小结:

第6环节、布置作业:

构造向量总结 第3篇

《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

设计原理运用了由特殊到一般的认识、思维过程,

难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

本节采用以下教学方法:

1、类比:由数的加法运算类比向量的加法运算。

2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。

3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。

4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

2、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

3、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

1、知识回顾:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量与数量的区别、响亮的表示、相等向量概念,这些都是新课学习中必要的知识铺垫。

2、新课讲解(1)向量加法的定义

①向量加法的三角形法则边形法则共线向量的加法

方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是

运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。

非共线向量的加法

②向量加法的平行四边形法则(2)向量加法的运算律

①交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

接下来是对应的两个练习,运用交换律与结合律计算向量的和。

设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

3、例题讲解例

1、例2 4.课堂练习

5、小结

先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。

(1)三角形法则首尾相接,适用于任意多个向量的求和平行四边形法则:起点相同,适用于不共线向量的求和。

(2)平行四边形法则:起点相同,适用于不共线向量的求和。(3)运算律

交换律:+ = +

结合律:(+)+ = +(+)

4、作业:p91,a组

2、。

构造向量总结 第4篇

@Override @SuppressWarnings(_unchecked_) public E set(int index, E e) { //xxx数组下标越界检查 rangeCheck(index); //xxx先暂存之前index下标处元素的引用 E oldValue = (E)[index]; //xxx将index下标元素设置为参数_e_ [index] = e; //xxx返回被替换掉的元素 return oldValue; } @Override @SuppressWarnings(_unchecked_) public E get(int index) { //xxx数组下标越界检查 rangeCheck(index); //xxx返回对应下标的元素 return (E)[index]; }

构造向量总结 第5篇

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

然后是学习小结(由学生完成)

最后作业布置!