当前位置:首页 > 教程 > 求级数的和的方法总结(实用4篇)

求级数的和的方法总结(实用4篇)

  • 总结
  • 2024-03-03 12:28:04
  • 178

求级数的和的方法总结 第1篇

求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为xxx析法。

例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)

分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用xxx析法及分组求和法求解,也可以在xxx析法的基础上利用并项求和法求的结果。

解:当n为偶数时,

Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)

=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)

=-n2(1+2n-3)2+n2(3+2n-1)2

=-n2-n2+n2+n2=n

当n为奇数时,

Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)

=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)

=-n+12(1+2n-1)2+n-12(3+2n-3)2

=-n2+n2+n2-n2=-n

综上所述,Sn=(-1)nn

求级数的和的方法总结 第2篇

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。一般步骤是:拆裂通项――重新分组――求和合并。

例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和

解由和式可知,式中第n项为an=n(3n+1)=3n2+n

∴Sn=1×4+2×7+3×10+…+n(3n+1)

=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)

=3(12+22+32+…+n2)+(1+2+3+…+n)

=3×16n(n+1)(2n+1)+n(n+1)2

=n(n+1)2

求级数的和的方法总结 第3篇

数列求和方法的总结

1.基本公式法

2.错位相消法:

3.分组求和

把一个数列分成几个可以直接求和的数列,然后利用公式法求和。

4.裂项(拆项)求和

把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。

5.倒序相加法

根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。

求级数的和的方法总结 第4篇

等差数列求和方法总结

一.用倒序相加法求数列的前n项和

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的`和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2

解:Sn=a1+a2+a3+...+an   ①

倒序得:Sn=an+an-1+an-2+…+a1  ②

①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)

又∵a1+an=a2+an-1=a3+an-2=…=an+a1

∴2Sn=n(a2+an)  Sn=n(a1+an)/2

二.用公式法求数列的前n项和

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

三.用裂项相消法求数列的前n项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

四.用错位相减法求数列的前n项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

五.用迭加法求数列的前n项和

迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

六.用分组求和法求数列的前n项和

分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

七.用构造法求数列的前n项和

构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。