当前位置:首页 > 教程 > 初二数学一次函数知识点总结(实用6篇)

初二数学一次函数知识点总结(实用6篇)

  • 总结
  • 2024-02-22 09:13:18
  • 156

初二数学一次函数知识点总结 第1篇

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

初二数学一次函数知识点总结 第2篇

一次函数y=kx+b的图象是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k≠0)

(2)必过点:(0,b)和(-b/k,0)

(3)走向:k>0,图象经过第一、三象限;

k<0,图象经过第二、四象限

b>0,图象经过第一、二象限;

b<0,图象经过第三、四象限Ûîíì>>

k>0,b>0;<=>直线经过第一、二、三象限

k>0,b<0;<=>直线经过第一、三、四象限

K<0,b>0;<=>直线经过第一、二、四象限

K<0,b<0;<=>直线经过第二、三、四象限

(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.

(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.

直线y=k1x+b1与y=k2x+b2的位置关系

(1)两直线平行:k1=k2且b1≠b2

(2)两直线相交:k1≠k2

(3)两直线重合:k1=k2且b1=b2

初二数学一次函数知识点总结 第3篇

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

初二数学一次函数知识点总结 第4篇

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

初二数学一次函数知识点总结 第5篇

函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.

正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义. 从图象中获取的信息一般是:

(1)从函数图象的形状判定函数的类型;

(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义. 解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.

用函数观点看方程(组)与不等式

初二数学一次函数知识点总结 第6篇

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=-(a/b)x++c/b的图象相同.

(2)二元一次方程组

a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=-(a2/b2)x+c2/b2的图像交点。

练习题

以上就是极客数学帮整理的有关于初二数学一次函数知识点全部内容了。返回搜狐,查看更多