高数知识点总结(精选6篇)
- 总结
- 2024-01-08 12:44:56
- 190
高数知识点总结 第1篇
简单随机抽样
(1)总体和样本
①在统计学中 , 把研究对象的全体叫做总体。②把每个研究对象叫做个体。③把总体中个体的总数叫做总体容量。④为了研究总体 的有关性质,一般从总体中随机抽取一部分: x1,x2 , …,xx 研究,我们称它为样本。其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。特点是:每个样本单位被抽中的`可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法;②随机数表法;③计算机模拟法;③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查
(5)随机数表法
高数知识点总结 第2篇
《复变函数与积分变换》是电气技术、自动化及信号处理等工科专业的重要基础课,也是重要的工具性课程。本课程包括两部分内容:复变函数和积分变换。复变函数与积分变换的学习是为以后学习工程力学、电工学、电磁学、振动力学及无线电技术等奠定基础。
二、教学过程、方法及教学效果
1、命题分析
命题符合教学大纲基本要求,知识点覆盖面广,难易适中。重点考查了学生的基本概念、基本理论和技能的掌握程度以及综合运用能力。命题表述简明、准确,题量适中。
2、答题分析
绝大多数同学学习态度较好、学习积极性较高,能认真备考,掌握了相关的基本知识点,和相关题目的运算。从学生的考试情况来看,总体来说效果是比较好的。
3、成绩分析
学生总数104平均分
4、教学效果
总体情况比较理想,同学们普遍感觉对该课程的相关理论有了一定的了解,基本掌握了本课程的相关知识。
三、存在的不足及改进措施
在今后的教学中,尤其要加强教学内容与专业相结合,使学生更有兴趣学习这门课程,对教材进行适当的处理,调整讲解顺序,抓住关键知识点,在课堂上加大对学生训练的力度。课后及时批改学生作业,及时讲评并解答学生的各种疑难问题。
四、教改建议
学时相对较少,概念和理论不能深入展开讲解;应适当增加学时,以增加习题课的教学,使学生能够更牢固掌握该门课程。
90~100分(优)80~89分(良)167226优秀率70~79分(中)1315%60~69分(及)0~59分(不及)35及格率1487%
高数知识点总结 第3篇
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、xxx的诱导公式;
7、两角和与差的正弦、xxx、正切;
8、二倍角的正弦、xxx、正切;
9、正弦函数、xxx函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的.图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、xxx定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
高数知识点总结 第4篇
(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)
(2)幂函数(一次函数、二次函数,多项式函数和有理函数)
(3)指数和对数(指数和对数的公式运算以及函数性质)
(4)三角函数和反三角函数(运算公式和函数性质)
(5)复合函数,反函数
(6)参数函数,极坐标函数,分段函数
(7)函数图像平移和变换
and Continuity极限和连续
(1)极限的定义和左右极限
(2)极限的运算法则和有理函数求极限
(3)两个重要的极限
(4)极限的应用-求渐近线
(5)连续的定义
(6)三类不连续点(移点、跳点和无穷点)
(7)最值定理、介值定理和零值定理
(1)导数的定义、几何意义和单侧导数
(2)极限、连续和可导的关系
(3)导数的求导法则(共21个)
(4)复合函数求导
(5)高阶导数
(6)隐函数求导数和高阶导数
(7)反函数求导数
(8)参数函数求导数和极坐标求导数
of Derivative导数的应用
(1)微分中值定理(D-MVT)
(2)几何应用-切线和法线和相对变化率
(3)物理应用-求速度和加速度(一维和二维运动)
(4)求极值、最值,函数的增减性和凹凸性
(5)xxx达法则求极限
(6)微分和线性估计,四种估计求近似值
(7)欧拉法则求近似值
Integral不定积分
(1)不定积分和导数的关系
(2)不定积分的公式(18个)
(3)U换元法求不定积分
(4)分部积分法求不定积分
(5)待定系数法求不定积分
Integral 定积分
(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义
(2)xxx-莱布尼茨公式和定积分的.性质
(3)Accumulation function求导数
(4)反常函数求积分
of Integral定积分的应用
(1)积分中值定理(I-MVT)
(2)定积分求面积、极坐标求面积
(3)定积分求体积,横截面体积
(4)求弧长
(5)定积分的物理应用
Equation微分方程
(1)可分离变量的微分方程和xxx特微分方程
(2)斜率场
Series无穷级数
(1)无穷级数的定义和数列的级数
(2)三个审敛法-比值、积分、比较审敛法
(3)四种级数-调和级数、几何级数、P级数和交错级数
(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数
(5)级数的运算和拉格朗日余项、拉格朗日误差
注意:
(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
(2)微积分BC课程比AB课程考察内容更多,题目更难,AB的内容和难度大概相当于BC的1/2,多出的内容部分已经在上面用号标出。
高数知识点总结 第5篇
一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是xxx的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是xxx的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是xxx的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的'前n项和公式:当q=1时,Sn=n a1 (是xxx的正比例式);
当q≠1时,Sn=
Sn=
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
高数知识点总结 第6篇
一、圆及圆的相关量的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。大于xxx的弧称为优弧,小于xxx的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫
做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法
圆--⊙ 半径—r 弧--⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定
理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距
离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
外离P>R+r;外切P=R+r;相交R-r
三、有关圆的计算公式
1.圆的`周长C=2πr=πd
2.圆的面积S=s=πr?
3.扇形弧长l=nπr/180
4.扇形面积S=nπr? /360=rl/2
5.圆锥侧面积S=πrl
四、圆的方程
1.圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
(x-a)^2+(y-b)^2=r^2
2.圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.
五、圆与直线的位置关系判断
平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是
讨论如下2种情况:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离
(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)
将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2
令y=b,求出此时的两个x值x1,x2,并且我们规定x1
当x=-C/Ax2时,直线与圆相离
当x1
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
圆的定理:
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2.圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
11.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 xxx(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
本文由admin于2024-01-08发表在叁佰资料网,如有疑问,请联系我们。
本文链接:http://www.sanbaiyy.com/p/10272.html
上一篇
采购员绩效目标设定范文(共9篇)
下一篇
听课总结与反思(必备15篇)