数列考点总结(实用11篇)
- 总结
- 2024-02-27 08:32:39
- 215
数列考点总结 第1篇
对于数列\left\{ a_{n}\right\} ,如果存在一个常数 T \left( T \in N ^ { + } \right), 使得对任意的正整数 n>n_0 恒有a _ { n + T } = a _ { n } 成立,则称数列\left\{ a_{n}\right\} 是从第 n_0 项起的周期为 T 的周期数列。若 n _ { 0 } = 1 ,则称数列\left\{ a_{n}\right\} 为纯周期数列,若 n _ { 0 } \geq 2 ,则称数列\left\{ a_{n}\right\} 为混周期数列, T 的最小值称为最小正周期,简称周期.
(1)周期数列是无穷数列,其值域是有限集;
(2)周期数列必有最小正周期(这一点与周期函数不同);
(3)如果 T 是数列 \left\{ A_{n}\right\} 的周期,则对于任意的 k\in N^* , kT 也是数列\left\{ A_{n}\right\} 的周期;
(4)如果T是数列\left\{ A_{n}\right\} 的最小正周期,M是数列\left\{ A_{n}\right\} 的任一周期,则必有 T 整除 M ,即 M=kT,k\in N^* ;
(5)已知数列\left\{ A_{n}\right\} 满足 A_{n+t}=A_n ( t 为常数), S_n、T_n 分别为\left\{ A_{n}\right\} 的前 n 项的和与积,若 n=qt+r,0≤r
(1) a _ { n } + a _ { n - 1 } = s \Rightarrow T = 2
(2) a _ { n } a _ { n - 1 } = s \Rightarrow T = 2
(3) a _ { n + 1 } = \frac { 1 - a _ { n } } { 1 + a _ { n } } \Rightarrow T = 2
特别地, a _ { n + 1 } = \frac { x a _ { n } + y } { k a _ { n } + b } , x = b \Rightarrow T = 2
(4) a _ { n } + a _ { n - 1 } + a _ { n - 2 } = s \Rightarrow T = 3
(5) a _ { n } \cdot a _ { n - 1 } \cdot a _ { n - 2 } = s \Rightarrow T = 3
(6) a _ { n + 1 } = - \frac { 1 } { 1 + a _ { n } } \Rightarrow T = 3
(7) a _ { n + 1 } = 1 - \frac { 1 } { a _ { n } } \Rightarrow T = 3
(8) a _ { n + 1 } = \frac { 1 + a _ { n } } { 1 - a _ { n } } \Rightarrow T = 4
(9) a _ { n + 1 } = \frac { 1 - a _ { n } } { 1 + a _ { n } } \Rightarrow T = 2
(10) a _ { n + 1 } = \frac { a _ { n } - 1 } { a _ { n } + 1 } \Rightarrow T = 4
(11) a _ { n + 2 } = a _ { n + 1 } - a _ { n } \Rightarrow T = 6
(12) a _ { n } = \frac { \sqrt { 3 } a _ { n - 1 } + 1 } { \sqrt { 3 } - a _ { n - 1 } } = \frac { a _ { n - 1 } + \frac { \sqrt { 3 } } { 3 } } { 1 - \frac { \sqrt { 3 } } { 3 } a _ { n } } \Rightarrow T = 6
数列考点总结 第2篇
高中数列知识点总结
高中数列知识点总结
1、高二数学数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的'数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。
2、高二数学数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。
3、高二数学数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一。如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循。
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式。
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项。
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式。
如2的不足近似值,精确到1,0。1,0。01,0。001,0。000 1,…所构成的数列1,1。4,1。41,1。414,1。414 2,…就没有通项公式。
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一。
4、高二数学数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1 2 3 4 5 6 7
项: 4 5 6 7 8 9 10
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射。因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值。这里的函数是一种特殊的函数,它的自变量只能取正整数。
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式。
数列是一种特殊的函数,数列是可以用图象直观地表示的。
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确。
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点。
5、高二数学递推数列
数列考点总结 第3篇
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的'通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
(1)求{an}通项公式 (2)略
解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-
又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。
证明:本题即证an+1-(n+1)=q(an-n) (xxx非0常数)
由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1
数列考点总结 第4篇
一、设计思想
本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。
二、教学目标
1. 通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;
2. 通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;
3. 在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;
4. 通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
5. 从现实出发,学生能抽象出现实生活中的数列
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
三、教学过程
活动一:生活中实例,概括出数列的概念
1. 背景引入:
观察以下情境:
情境1: 各年树木的枝干数: 1,1,2,3,5,8,... 情境2:某彗星出现的年份: 1740,1823,1906,_,2072,...
情境3:细胞分裂的个数: 1,2,4,8,16,... 情境4 : A同学最近6次考试的名次 17, 18, 5, 8, 10, 8
情境5: 奇虎360 最近一个周每日的收盘价:
问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?
或者有什么共同特征?
共同特点:
(1)排成一列,可以表达信息
(2)顺序不能交换,否则意义不一样.
设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。
2. 数列的概念
(1)数列、项的定义:
通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。 问题2:能否用准确的语言给我描述一下情境4中的数列?
设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。
问题3:这两个数都是8,表示的含义是否一样?
不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。
排在第一位的叫首项,排在第二位的叫第二项……排在第n位的数
问题4:根据对数列的理解,你能否举出数列的例子?
答:我校高一年级各班的人数。
问题5:能否抽象出数列的一般形式?
a1,a2,a3,...,an,...,记为 ?an?
(2)数列与集合的区别
问题6:数列是集合吗?
通过与集合的特点进行对比,更清楚的数列的特点。
让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。
(3)数列的分类?能不能不讲?
活动二:思考数列的表示——通项公式
3. 通项公式的概念
问题7: 对于上述情境中的数列,有没有更简洁的表示方式?
学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念
一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.
4. 通项公式的存在性
问题8:是否任意一个数列都能写出通项公式?
写出通项公式
活动三:用函数的观点看待数列
5. 数列也是函数
问题9:在数列?an?中,对于每一个正整数n(或n??1,2,...,k?),是不是都有一个数an与之对应?
问题10:数列是不是函数?
通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。
把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。
6. 用函数的观点看待数列
问题11:所以,除了用解析式表示数列,还有哪些方法?
再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。
例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象: (?1)nn(1)an?; (2).an?n n?12
问题12:数列的图象的特点是什么?
数列的图象是一些孤立的点。
通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。
【课堂小结】
1.数列的概念;
2.求数列的通项公式的要领.
数列考点总结 第5篇
高一数列知识点总结
等差数列公式
等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2
若m+n=2p则:am+an=2ap
以上n均为正整数
第n项的值=首项+(项数-1)*公差
前n项的和=(首项+末项)*项数/2
公差=后项-前项
等比数列公式
等比数列求和公式
(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (xxx公比,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和xxx等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)“G是a、b的等比中项”“G^2=ab(G ≠ 0)”.
(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式xxx表示等比数列的第n项。
等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
数列考点总结 第6篇
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
数列考点总结 第7篇
高考数列知识点总结
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的`数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
数列考点总结 第8篇
如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数,那么这个数列就叫作等比数列。
(1)递推关系\dfrac{a_{n+1}}{a_{n}}=q( q\ne0) 或 \dfrac{a_{n}}{a_{n-1}}=q (q\ne0,n\in N^\ast且n\geq2)。 (2)通项公式:a_{n}=a_{1}q^{n-1} (a_1 q\ne0) 推广形式:a_{n}=a_{n}q^{n-m} (3)求和公式:S_{n}=\begin{cases}na_{1},q=1\\ \dfrac{a_{1}(1-q^{n})}{1-q}=\dfrac{a_{1}-a_nq}{1-q} ,q\ne0且q\ne1\end{cases}
等差数列的性质主要有以下12个方面。
例题一:
例题一:
等比数列单调性判断方法:
例题一:
等比数列的判定方法主要有以下几种
数列考点总结 第9篇
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列。(1)递推关系: a_{n+1}-a_{n}=d(常数),或 a_{n}-a_{n-1}=d (n\in N^\ast且n\geq2)。(2)通项公式: a_{n}=a_1+(n-1)d 。推广形式: a_{n}=a_m+(n-m)d (当 d\ne0 时, a_n 是关于 n 的一次函数)(3)求和公式: S_{n}=\dfrac{n\left( a_{1}+a_{n}\right) }{2} =na_{1}+\dfrac{n\left( n-1\right) }{2}d (当 d\ne0 时, S_n 是关于 n 的二次函数,且常数项为零)
例题:
等差数列的性质主要有以下12个方面。
例题一:
例题二
例题一:
例题二
例题三
例题一:
例题二:
例题三
例题四
例题一:
例题二
例题三
例题一
例题二
从本质上讲,研究数列和的最值问题的方法与研究数列通项最值问题的方法是一致的,当 S_n 的表达式已给出或以求出时,最值问题的研究可采用以下方法。
(1)图像分析法:利用基本初等函数的图像及图像的变换来求解。若 a _ { 1 } , a _ { 2 } , \dots , a _ { m } > 0 , a _ { m + 1 } , a _ { m + 2 } , \ldots < 0 xxx m 项和 S_m 最大;若 a _ { 1 } , a _ { 2 } , \dots , a _ { m } < 0 , a _ { m + 1 } , a _ { m + 2 } , \ldots > 0 xxx m 项和 S_m 最小.(2)函数性质法:如二次函数、指数函数、反比例函数及复合函数等。由上述性质(10)等差数列前n项和 S_n=An^2+Bn ( A,B 是常数 n\in N ),则等差数列可按二次函数求最值.设 a_1>0(或a_1<0) ,且 S_p =S_q 若 p+q 是偶数,则 n = \frac { p + q } { 2 } 时, S_n 最大(最小);若 p+q 是奇数,则 n = \frac { p + q \pm 1 } { 2 } 时, S_n 最大(最小)。(3)通项分析法:①若 a_n>0 xxx,则 S_n 单调递增, S_1 最小;若 a_n<0 xxx,则 S_n 单调递减, S_1 最大。②若 数列S_n 先增后减,则其有最大值,取到最大值的条件是 \begin{cases}S_{n}\geq S_{n-1}\\ S_{n}\geq S_{n+1}\end{cases} (n\geq2),即 \begin{cases}a_{n}\geq 0\\ a_{n+1}\leq 0\end{cases} (n\geq2) 。若 数列S_n 先减后增,则其有最小值,取到最小值的条件是 \begin{cases}S_{n}\leq S_{n-1}\\ S_{n}\leq S_{n+1}\end{cases}(n\geq2) ,即 \begin{cases}a_{n}\leq 0\\ a_{n+1}\geq 0\end{cases}(n\geq2) 。
例题一
例题二
等差数列的判定方法主要有四种:定义法、通项法、中项法、求和法。解大题只能用定义法,后三者在解小题可以提速。
(1)定义法: a_{n+1}-a_n=d (常数);(2)通项法:a_{n}=a_1+(n-1)d ;(3)中项法: 2a_{n+1}=a_n+a_{n+2} ;(4)求和法:S_n=An^2+Bn ( A,B 是常数 n\in N )
例题一:
例题二
例题三
数列考点总结 第10篇
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1. 等差数列的概念;
2. 等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张(内容见下面)
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:(V)课后作业
一、课本P118习题 1,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
板书设计
一、定义
1. (n≥2)
一、通项公式
2. 公式推导过程
教学后记
数列考点总结 第11篇
等比数列求和公式
(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (xxx公比,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和xxx等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)“G是a、b的等比中项”“G^2=ab(G ≠ 0)”.
(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式xxx表示等比数列的第n项。
等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
本文由admin于2024-02-27发表在叁佰资料网,如有疑问,请联系我们。
本文链接:http://www.sanbaiyy.com/p/15259.html
上一篇
亲自活动总结(通用35篇)
下一篇
英语科总结(通用13篇)