有理数及其运算总结(汇总8篇)
- 总结
- 2024-02-21 09:46:25
- 207
有理数及其运算总结 第1篇
(1)凡能写成形式的数,都是有理数,整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的`数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是xxx数。
有理数及其运算总结 第2篇
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数
(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的。是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。
(3)一个数同零相加,仍得这个数。
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不〈WWW.〉写。
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号 第二步:绝对值相乘
10、乘积的符号的确定
几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。
11、倒数:乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)
倒数是本身的只有1和-1。
12、有理数的除法
除以一个不等于0的数,等于乘这个数的倒数;0除以任何一个不等于0的数,都得0。
13、有理数的乘方
(1)求相同因数的积的运算叫做乘方。乘方运算的结果叫幂。
读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。
(2)正数的任何次幂都是正数。
负数的奇数次幂是负数,
负数的偶数次幂是正数。
(3)一个数的平方为它本身,这个数是0和1;
一个数的立方为它本身,这个数是0、1和-1。
14、科学计数法
一般情况下,把大于10的数表示成
(n为正整数)的形式时,为了统一标准,规定了a的范围,(1≤a<10),这种记数方法叫做科学记数法。
15、有理数混合运算
有理数混合运算的顺序:先算乘方,再算乘除,最后算加减,有括号的先算括号里的。
有理数及其运算总结 第3篇
去尾法
规定取到某位,这位以后的数字一律舍去,此即去尾法。如:用去尾法求 的取5位的近似数为.
收尾法
规定取到某位,把某位以后的数字全部舍去,若舍去的数字不全是零,则在所保留数字的末位加上一个1,此即收尾法。也称为“进一法”。如用收尾法求的精确到百分位的近似数是.
四舍五入法
规定保留到某位时,看其下一位的数字,这个数字不大于4时按去尾法处理,这个数字不小于5时按收尾法处理。
有理数及其运算总结 第4篇
把一个数表示成 的形式,这种记数的方法叫科学记数法。其中n是整数。
注意
(1)当一个数的绝对值不小于1时,整数n的值等于这个数的整数位数减去1;
(2)当这个数绝对值小于1时,n为负整数, 等于这个数第一个非零数字前面零的个数(包括小数点前面的零)。
有理数及其运算总结 第5篇
有理数:
整数和分数统称为有理数。
(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
整数包括正整数、零、负整数。例如:1、2、3、0、-1、-2、-3等等。
分数包括正分数和负分数,例如:1/2、、-1/2、-等等。
有理数的分类
(1)按整数、分数的关系分类:
(2)按正数、负数与0的关系分类:
注:通常把正数和0统称为非负数,负数和0统称为xxx数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为xxx整数。
如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是xxx数。
数轴
数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。正如xxx教授诗云:
数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数是难入微。数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!
数与形的第一次联姻——数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。
1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的定义包含三层含义:
(1)数轴是一条直线,可以向两端无限延伸;
(2)数轴有三要素——原点、正方向、单位长度,三者缺一不可;
(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。
2.数轴的画法:
(1)画一条直线(一般画成水平的直线)。
(2)在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。
(3)确定正方向(一般规定向右为正),用箭头表示出来。
(4)选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……
(1)原点的位置、单位长度的大小可根据实际情况适当选取;
(2)确定单位长度时,根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;
3.数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示。正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。
4.利用数轴比较有理数的大小:在数轴上表示的两个数,右边的数总比左边的数大。正数都大于0;负数都小于0;正数大于一切负数。
相反数
1.相反数的定义:
(1)相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。如,4与-4互为相反数。
(2)相反数的代数定义:只有符号不同的两个数(除了符号不同以外完全相同),我们说其中一个是另一个的相反数。
2.相反数的性质:任何一个数都有相反数,而且只有一个。正数的相反数是负数,负数的相反数是正数,0的相反数是0。0是唯一一个相反数等于本身的数。反之,如果a=-a,那么a一定是0。
3.相反数的特征:若a与b互为相反数,则a+b=0(或a=-b)若a+b=0(或a=-b),则a与b互为相反数。
4.求一个数的相反数的方法:(见书)
5.多重符号的化简:
(1)在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+(-5)=-5。
(2)在一个数的前面添上一个“-”号,就成为原数的'相反数。如-(-3)就是-3的相反数,因此,-(-3)=3。
绝对值的概念
1.绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“丨a丨”
2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
有理数大小的比较
正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小。
利用数轴,在数轴右边的数永远大于左边的数。
有理数及其运算总结 第6篇
一、正数与负数:
1.正数:像+,+420、+30、+10%等带有理数“+”号的数叫做正数。为了强2.负数:像-3、-4754、-50、、-15%等带有“-”号的数叫做负数。三、数轴:
1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:①画一条水平的直线;②在直线的适当位置选取一点作为原点,调正数,前面加上“+”号,也可以省略不写。而负数前面的“-”号不能省略。
3.零既不是正数也不是负数,它是正数与负数的分界点。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”
号的数是负数。例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数;能用正数与负数表示相反意义的量,习惯上把增加、盈利等规定为正,它们相反意
义的量规定为负,正、负是相对而言有理数。
二、有理数及其分类:
有理数:整数与分数统称为有理数。整数包括三类:正整数、零、负整数。分数包括两类:正分数和负分数。
注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩
大为有理数,奇数和偶数的外延也由自然数扩大到整数。
按整数、分数的关系分类:按正数、负数、零的关系分类:正整数整数零正有理数正整数正分数有理数负整数有理零分数正分数负有理数负整数负分数
负分数
并用0表示这点;③确定向右为正方向,用箭头表示出来;④选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,„;从原点向左,每隔一个单位长度取一点,依次为-
1,-2,-3,„。如图1所示。
四、相反数:
只有符?号不同的两个数互为相反数。规定零的相反数是零。
从数轴上看,表示互为相反数的两个数,分别位于原点的两侧,且与原点的距离相等,如图1,3与-3互为相反数。
注意:相反数是成对出现的,不能单独存在,如+2与-2互为相反数,说明+2的相反数是-2,-2的相反数是+2,单独一个数不能说相反数;“只有”的含义说明像+5与-3这样的两个数不是互为相反数。
五、绝对值:
绝对值的几何定义:在数轴上,表示一个数a的点到原点的距离叫做这个数a的绝对值,记作|a|。
绝对值的代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
注意:①绝对值的求法:先判断这个数是正数、负数、还是零,再根据绝对值的代数定义去掉绝对符号;②绝对值的非负*:无论是绝对值的几何定义,还是绝对值的代数定义都揭示了绝对值的重要*质
—非负*。也就是说,任何一个有理数
a(a0)
的绝对值都是非负数,即|a
|0,|a|
0(a0)。
a(a0)
六、非负数
若数a?0,则称a为非负数。
非负数的*质:任何非负数的和仍为非负数;如果几个非负数的和为0,则这几个非负数均为0。
七、倒数
乘积为1的两个有理数互为倒数。
倒数的求法:求一个数的倒数,直接可写成这个数分之一;求一个分数的倒数,十、乘方
乘方的定义:求几个相同因数积的运算。乘方的结果叫做幂。在an中a叫做底数,n叫做指数。读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂。
根据乘方的意义转化为乘方,再根据乘法法则进行计算;根据乘方的*质,先判断幂的符号,再计算幂的绝对值。
只要将分子、分母颠倒即可;求一个带分数的倒数,应先将带分数化成假分数,再将分子、分母颠倒;求一个小数的倒数,应先将小数化成分数,然后再求倒数。
只有零没有倒数,其他任何有理数都有倒数。正数的倒数为正数,负数的倒数为负数。
八、有理数大小的比较:
1.利用数轴比较大小:数轴上表示的两个数,右边的数总比左边的数大。于是:正数大于0,0大于负数,正数大于一切负数。
2任意有理数大小的比较法则:正数都大于零,负数都小于零,正数大于一切负数,两个负数,绝对值大的反而小。比较两个负数大小的步骤是:首先分别求出两个负数的绝对值;再比较两个绝对值的大
小;最后根据“两个负数,绝对值大的反而小”作出正确判断。
九、基本运算
1、有理数的加法法则:同号两数相加,取相同的符号,并把其绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数与零
相加,仍得这个数。
2、有理数的减法法则:减去一个数,等于加上这个数的相反数。
3、有理数的乘法法则:两数相乘,同号得正,异号得负,并把其绝对值相乘;任何数与零相乘,都得零;几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负;当
负因数的个数为偶数个时,积为正。
4、有理数的除法法则:两数相除,同号得正,异号得负,并把其绝对值相除;零除以任何一个不为零的数,都得零;除以一个数等于乘以这个数的倒数(零不能作除数)。
十一、有理数运算律
①加法的交换律a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使0+a=a+0=a;
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;⑤乘法的交换律ab=ba;⑥乘法的结合律a(bc)=(ab)c;⑦分配律a(b+c)=ab+ac;
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
⑩0a=0文字解释:一个数乘0还于0。
十二、有理数的运算顺序
先乘方、开方,后乘除,最后加减;有括号时,先算括号里面的;同级运算按从左至右的顺序进行,同时注意运算律的灵活应用。
说明:加减是一级运算,乘除是二级运算,乘方、开方是三级运算。
十三、近似数、有效数字与科学计数法
近似数:一个与实际数比较接近的数,称为近似数。
有效数字:对于一个近似数,从左边第一个不是0的数字开始,草最末一个数字止,都是这个近似数的有效数字。
科学计数法:把一个数记作a×10n
形式(其中1≤a≤10,n为整数。)
1.七年级上册有理数经典数学题
2.七年级数学上册第二章有理数及其运算试题整理
3.初一数学经典的知识点整理
4.七年级数学上册期末考数学知识点整理
5.初一数学知识点:分式
6.初中数学的常用的5种经典的解题方法
7.初一上学期数学的第一、二章知识点
8.初一数学知识点:角
有理数及其运算总结 第7篇
有理数是数学中的一个常考点,很多同学在做题的时候经常会遇见,在这里把七年级上册有理数运算法则知识点告诉大家,以备同学们在遇到的时候参考一下。
(1)有理数的加法法则:
1.同号两数相加,和取相同的符号,并把绝对值相加;
2.绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3.一个数与零相加仍得这个数;
4.两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:
①两数相乘,同号得正,异号得负,并把绝对值相乘;
②任何数与零相乘都得零;
③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
[5*(4-5+5)]÷5
=(5*4)÷5
⑺运算律:
①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c);
③乘法的交换律:ab=ba;
④乘法的结合律:(ab)c=a(bc);
⑤乘法对加法的分配律:a(b+c)=ab+ac;
注:除法没有分配律。
有理数及其运算总结 第8篇
1.有理数:
(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数0,小数-大数0.
6.互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数。
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的'任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:
把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17.有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:
先乘方,后乘除,最后加减。
本文由admin于2024-02-21发表在叁佰资料网,如有疑问,请联系我们。
本文链接:http://www.sanbaiyy.com/p/14669.html
上一篇
球类运动会总结(12篇)
下一篇
前期报建工作总结(汇总3篇)